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A Functional Relation Among the Pair Correlations of 
the Two-Dimensional One-Component Plasma 

L ~amaj 1'2 and J. K. Percus 1' 3 

Receioed December 13, 1994 

We map the classical two-dimensional one-component plasma of charged par- 
ticles with coupling constant F an even positive integer onto a one-dimensional 
fermionic system. We then show that, in the thermodynamic limit of the fluid 
regime, translational invariance of the two-body density implies an infinite 
sequence of interrelations among the coefficients of its short-distance expansion. 
The existence of these sum rules turns out to be related to a general symmetry 
of the Coulomb system, providing a functional relation for the two-body density 
for arbitrary coupling F. 
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1. I N T R O D U C T I O N  

The classical 2 D  o n e - c o m p o n e n t  p lasma ( O C P )  is a system of  ident ical  
point l ike  part icles j =  0, 1 ..... N - 1  of  charge e a n d  pos i t ion  vectors  rj, 
conf ined to a disk of radius  R whose center  is t aken  as the or igin  0. The  
particles are e m b e d d e d  in  a spat ia l ly  un i fo rm neu t ra l i z ing  b a c k g r o u n d  of 
charge densi ty  - e n o ,  where n o = N / n R  2 s tands  for the n u m b e r  density.  In  
two d imens ions ,  the pa r t i c l e -pos i t ion -dependen t  par t  of  the C o u l o m b  
potent ia l  energy �9 of  the b a c k g r o u n d - p a r t i c l e  sys tem reads ~ 

�9 =~ , [u ( r j )+e2r~nor} /2 ] - - e  2 ~ ln rjk (I) 
j ]<k  

where r j =  Irjl, rjk= Irj-rkl, an d  u(r)  is an  a rb i t r a ry  external  potent ia l ;  
a l though  we will concen t ra t e  on  the case u ( r ) =  0 a n d  the t h e r m o d y n a m i c  
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limit N---, o% it is useful to keep u(r), N as yet undetermined. The corre- 
sponding Boltzmann factor 

exp(--fl~) = y[ w(ri) I-I r~ (2) 
j j<k 

with 

w(r) = exp[ --flu(r) -- I'rrnor2/2] (3) 

depends on the only dimensionless coupling constant/" = fie 2. The logarithm 
of the partition function 

1 I~ d2r~ f~ d2rN - ,  1-I w(rj) I-[ r; 
ZN=N'--~. 0<R ~r j j < k  

is the generating functional for the mean one-particle density 

(4) 

n(r) = ( ~  6( r j -  r ) /  (5) 

and the two-body density 

nz(r, r ' )=  ( ~ d;(rj--r)J(r k - - r ' ) /  
\ j , # k  

(6) 

in the sense that 

ln ZN 
n ( r ) = - -  (7) 

6-flu(r) 

nz(r, r') - -  n(r) n(r') -- w(r) 
&n(r)/w(r) 
6-flu(r') 

Correlations will be considered mainly in the truncated form 

(8) 

n2(r, r ' ) -n ( r )n ( r ' )  
h(r, r ' ) -  (9) 

n(r) n(r') 

Exact results for the thermodynamic and correlation functions are 
available in the weak coupling F ~  0 limit, as has been shown using the 
YBG integral equation hierarchy t2) and for the special case F =  2, t3) where 
the 2D OCP is equivalent to a system of independent fermions. Of 
particular interest is the F dependence of the falloff of the bulk correlations. 
In the limit F--, 0, they exhibit Debye-Hfickel exponential screening, while 
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they are of Gaussian type at F =  2. A temperature expansion around 
F =  2 (3) indicates the change from a monotonic decay of the two-body 
density for F < 2 to an oscillating one for F > 2. The OCP is in a fluid state 
up to F ~  142, where it becomes a 2D Wigner crystal. (4) Concerning inter- 
mediate values of F, it is generally accepted that the pair correlations 
display a monotonic exponential decay for 0~<F<2.  In the region 2 < 
F <  142, estimates for the oscillating correlations range from powerlike 
falloff, (s) exponentially fast decay in a mean spherical model of the lattice 
version of plasma, (6) to numerical evidence for Gaussian-type falloff at 
F =  4 coupling. (7) 

Besides the limit F ~  0 and the F =  2 case (together with the lowest 
order of the temperature expansion around F =  2), charged-fluid sum rules 
are another important source of exact information about the correlations 
(for a review see ref. 8). For the 2D OCP, there exist the zeroth-moment 
(electroneutrality), the second-moment (Stillinger-Lovett), (9'1~ and the 
fourth-moment (compressibility) t 11 ) conditions for the bulk h(r), implied by 
the specific form of the Coulomb tail at asymptotically large distance. "2) 
A kind of sum rule is represented also by the Jancovici result "3) relating 
two lowest-order coefficients of the short-distance expansion of the 
translational-invariant h(r). 

In this paper we show that Jancovici's result "3) represents in fact the 
lowest level of an infinite sequence of sum rules relating coefficients of the 
short-distance expansion of h(r). The derivation of these sum rules is 
outlined in a logical order, with an increasing level of complexity and 
applica.bility. We start in Section 2 with the study of a special choice of 
couplings F = 2y, where ? is a positive integer, allowing a Van Der Monde 
determinantal representation of the Coulomb Boltzmann factor. We map 
the 2D OCP of N particles onto a 2y-component fermionic field formulated 
on a 1D chain of N sites, with spatially inhomogeneous interactions among 
the fermionic components. In Section 3 we investigate how physical con- 
siderations of the homogeneity of the particle density and the translational 
invariance property of two-body density in the thermodynamic limit 
N ~  oo manifest themselves in the ID fermionic system, whose specific 
correlators determine the spatial dependence of the mentioned quantities. It 
turns out that the translational invariance of h(r) has, via fermionic 
correlators, feedback to the coefficients of its short-distance expansion 
which satisfy an infinite sequence of sum rules. These sum rules imply a 
functional relation for the pair correlation. It is shown in Section 4 that this 
functional relation follows from symmetry of the plasma two-body density 
with respect to a transformation of particle coordinates, valid as well for 
the most general case of an arbitrary particle number N, inhomogeneous 
external field u(r), and coupling F. 
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2. THE 2D OCP FORMULATED AS A 1D FERMIONIC SYSTEM 

For the sequence of couplings F = 2 y  0 ,=1 ,2 , . . . )  we can use the 
Van Der Monde determinantal representation 

1--[ r~'k = Jdet(~)eiOJ)kIj, k=O,...,N- , 12 (10) 
j < k  

where (rj, Oj) are the polar coordinates of ry, and rewrite the partition 
function (4) in the form 

ZN=N--~.I fro<R d2r~ s ,~_, < R d2r~v - , I-Ij w(ry)det(,)(,'j.eiOJ) k 

x ... det(~.)(rj#OJ) k detm(rye-~~ det(~,)(rye-~O0k ( 11 ) 

Every determinant detr176 k, and similarly detc=)(rje-;aJ) k ( a =  1 ..... 7) 
can be represented in terms of a set of 2N anticommuting variables, say 
(~J=', ~J=))7=~' and (~=), ~=))~v~, satisfying the ordinary Grassmann 
algebra and the anticommuting integral rules, ~4~ according to formulas 

det(=)O~eiOOklzk = o,...,N- l 

= cl~5=) cl~Cj =, 1 + E'~. ", E (rye ,) Ck= (12a) =j 
j r 0  k==0 

dett=)(rje-i~ = 0,...,N--I 

= f  d~}=)d(Jl ~, l+g,(.=) 2 ~ J  (rye-'OJ)t~,~ , (12b) 
j = 0  /==0 

The partition function (11) then reads 

1 
ZA,=N--~.s ,<R d2rN-l  ~ w(rj) 

- j 

N - - I {  

• I FI eo ,, '"' - ' "  �9 .. < j  < . . . < J ' ) 4  
j=O 

, v - 1  (=)] Ih~) 2 (rje-@)" x 1+ w 
== 1 k==O &=O 

(13) 

The determinants induce only bilinear combinations of anticommuting 
variables "of the same kind" (i.e., with the same index 00, so that we can 
introduce the Grassmann algebra also among "different kinds" of anticom- 
muting variables without changing the value of the anticommuting integral. 
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Since only combinations which contain all available anticommuting 
variables contribute to the anticommuting integral, the product over 0t in 
(13) for a given particle j can be replaced by 

N - - I  N - - I  

I~  (Y) " " " I [ / ( I ) ~ ( Y )  " " ' Lff('l } E E "~(1)'''~{Y)rkl+'"+k'+ll+'"+l'e 
j r d  =d  = y  '~kI "~k r ' j  

k l , . . . , k r  = 0 Ii,...,Ir=O 
• eie:(k, + ... +k~--tl . . . . .  O~kl:~ " ,I,(r) (14) " " , f , / r  

where the anticommutation property of the variables was applied. The 
resulting function of anticommuting variables becomes diagonal in (~, ~k) 
variables, which integrate out with the trivial factor 1. The polar coor- 
dinates of particles do not mix with each other, so we can integrate them 
separately with the same contribution for every particle: 

1 
Z N = ~  1-I " - ,  

j = o  

N . ~ f  N - -  1 

X E , ( 1 )  )c(r) "~k l  " " " ~k). 
k l , . .  =0 I1.....1~.=0 

X w(k I + . . .  + k r, l, + . . .  + l,) ~ ) . . .  ~Y'  (15) 

with w(k, l) defined by 

w(k, l) = fr<R d2r w(r) rk +/e iO{k-/) (16) 

Equivalently, 

z.=f <.exp Z w k, tl ', (17) 
j= k,l=O 

where the notation 

N - - I  

~k = ~ :~,):~2~ :~,) (18a) % k !  ~ k 2  " ' ' " ~ k y  
k l  , . . . ,k  r = 0 

( k l +  . . .  +kr=k) 
N - - I  

~ , =  E ~4: ''''2~ "'" " "  'rl2 'rt, (18b) 
6,...,/y=o 

(11+ .-. +/;,=1) 

is used for the combinations of products of y anticommuting field variables 
with the given sum of site indices. 
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To summarize, we have mapped the 2D OCP of N particles to a 
fermionic system formulated on a 1D chain of N sites. The fermionic field 
is composed of two, in a certain sense adjoint, sets of anticommuting 
variables {r {~k}; each of them contains y components. The interaction 
between the fermionic sets is accomplished via the combination (18a) and 
(18b) of anticommuting variables in the dimensionless Hamiltonian 
- -  7 ( N - - I )  ~ W'- -  ~k,t=o % (K, l )~ t ,  where the inhomogeneous coupling w(k , l ) ,  
defined by (16), reflects the effect of the logarithmic Coulomb interaction 
as well as the external field. In the special case of an angle-independent 
potential u(r), w(r) = w(r) implies w(k, 1) = w(k, k) 8,,t, a partial diagonal- 
ization in {S, ~} variables. For y = 1, we have the well-known solution 
Ztv = det w(k, l )[k, l=O.. . . ,  N _  I" 

3. S U M  RULES 

The fermionic representation of the generator (17) permits us to 
express formally the spatial dependence of the particle density and of the 
particle-particle density via the correlators of the 1D fermionic lattice field; 
in what follows we will use the notation 

- z  H ae'"'"'dr 
j = 0  

xexp ,.., 2kw(k ,  l) ~ t  "'" (19) 
k, l=O 

for an averaging over all 2y field components. 
The one-particle density (7) is readily obtained in the form 

y(N-- 1 ) 

n(r)=w(r)  ~ r k+ le ' e (* - t ) (Z ,~ l )  (20) 
k, l=O 

At first it seems that this relation is nothing but a reformulation of. the 
original 2D task to that of the calculation of the 1D fermionic correlators, 
with a comparable amount of mathematical difficulty. However, Eq. (20) 
represents an interesting equivalence of the classical and fermionic systems 
where the fermionic correlators determine the coefficients of the short- 
distance expansion of n(r)/w(r) and, conversely, physical considerations 
in two dimensions, such as the homogeneity of the one-particle density 
of the Coulomb fluid in the absence of an external potential and in the 
thermodynamic limit, put important restrictions on the fermionic corre- 
lators themselves. In particular, for u(r)= 0 we have w(r )=exp( -ynno  rz) 
and, in the limit N--, oo (which corresponds in the fermionic picture to an 
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infinite number of sites on the 1D chain, with N independence of relevant 
fermionic correlators), the fermionic coupling (16) reads 

nk! 
w(k, 1)= (ynno)k + l ~kt (21) 

The resulting diagonalization of the fermionic Hamiltonian in {3, ~} 
implies that 

(3k  ~g,) = (3k  ~gk) ~kl (22) 

so that 

n(r)=w(r) ~. (~,k~k) r ~ (23) 
k = 0  

The homogeneity of the particle density, n(r)= no, then implies 

(,.~kl~k> (TgRo)k+l ( I ) 
nyk! 7w(k,-~ forall k = 0 ,  1 .... (24) 

We see that the assumption of the homogeneous particle density fixes 
specific fermionic correlators, but this does not provide any new informa- 
tion about the 2D OCP. 

On the other hand, the physically motivated invariance of pair correla- 
tions in the fluid regime of the 2D OCP, when expressed in terms of the 1D 
fermionic correlators, feeds back to the internal structure of 2D correla- 
tions themselves. To prove this, let us first write down the fermionic 
formula for the truncated pair correlations (8), (9): 

w(r) w(r') 
h(r, r') = - 1 -~ 

n(r) n(r') 
),(N-- 1) 

X ~ rk+lr'(k'+r)ei~176 "~1") (25) 
k,l,k',l'=O 

For the case of interest u(r)= 0, N---, ~ with the diagonalized form of the 
fermionic coupling (21), 

(3k~t3~,~ t , ) : ,~0  iff k + k ' = l + l ' ,  k+k'>~ 7, 1+l'>~7 (26) 

The requirement of the equality k + k' = 1 + I' follows directly from the defini- 
tion of the averaging over the fermionic fields (19), while the inequalities 
result from the internal structure of {3, ~}, (18a) and (18b)--as soon as 
k + k ' <  Y (resp. l+ 1' <Y) there exists at least one anticommuting variable 
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~(~) (g,~)) which occurs twice in the product SkSk, (g/tg/r). In order to ks 
simplify the notation, we rescale the fermionic correlators, 

( S k  g/l~k, g /r )  = n~( 7nno)(k + t + k' + r)/2 ( k l  [ k'l '  ) (27) 

In the limit [ k - l i f o  o, ( S k g / k S t ~ l )  decouples to ( ~ k g / k ) ( 3 t g / t ) ,  
which, taking advantage of (24), implies that 

1 
lim ( k k l l l )  = (28) 

Ik--II~oo k! 1! 

The truncated correlation (25) is now expressed as a function of rescaled 
distance, defined by 

X = (y;gno) 1/2 r (29) 

as follows: 

h(x, x') = - 1 + e -(x2+x'2) 

),(N-- 1) 
xk +lx'(k' +rleiO(k--t)eiO'(k'--r)( kl  [ k ' l ' )  (30) 

k,l,k',l'=O 
( { k + k ' = l + l ' }  >~),) 

To establish a convenient format for incorporating the translational 
invariance property h(x, x ' ) =  h( I x -  x'[), we first consider the explicit form 
of the truncated correlation between particles localized at the origin x ' =  0 
and at an arbitrary point x, 

h (x )=  - 1  + e  -x2 ~. ( kk  ] 00) x 2k (31) 
k=) ,  

The coefficients { (kk  [ 00)} are positive numbers because in the averaging 
over anticommuting fields with the Hamiltonian diagonal in {3, ~} the 
parity of a permutation of anticommuting variables building Sk is exactly 
the same as that of the building elements of ~k. The asymptotic values 

lim ( k k  [ 0 0 )  = 1/k! (32) 
k~oO 

follow from (28). Substituting then 

x 2 ~ [x - x'l 2 = (xeiO_ x,eiO')(xe-iO _ x,e-iO') 
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in (31) and comparing with (30), we get 

k k 

~ ( - I )  t+' '  
I = m a x ( O , r + a - - k )  m = m a x ( O , r + s - - k )  

1 
x (Ira I k + m - r - - s , k + l - r - s )  

( r - - l ) !  ( s - -m) !  

where r, s = 0, 1 ..... k, and this can be inverted to read 

k I 1 

(kllk'l') = E ~ (-I) "+" 
. . . .  (O.k-r) . . . . .  (o,~- k') (k -- r)! ( l -  s)! 

x ( l ' - k + r + s , k ' - l + r + s l O 0 )  

(33) 

(34) 

under the constraint k + k '  =1+1' .  Some of the interrelations among the 
correlators can be readily verified by using the anticommutation rules for 
the building elements of {S, ~} together with the evident interchange 
symmetries among the fermionic field components. The other ones are non- 
trivial consequences of the translational invariance of h(x, x') and cannot 
be derived "directly" from the microscopic fermion model. A special case of 
these interrelations is represented by the choice r = k ,  s = 0  in (33) [or  
1=0, k ' = 0  in (34)]: 

(kk  [ 00) = ~. ( - 1 ) '  (10 [ 0 l )  (35) 
/=y 

Since (10 [ 0 l )  = ( S t ~ o S o ~ ' s )  = (S t~Fl~oSo) ,  while ~UoS o = ( - 1 )  r So~0, 
we see that ( lO I Ol ) = ( - 1 )~' ( ll I 00). Finally, then, 

k I 
( k k [ 0 0 ) = ~  ( - 1 ) r + ' - - ( / / ] 0 0 )  for k = ~ , y + l  .... (36) 

t=r ( k - l ) !  

The structure of the infinite set of linear relations (36) among the coef- 
ficients of the h(x) expansion (31) is the following. When k = y + 2 m  

822/80/3-4-21 
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(m = 1, 2,...), (kk  I 00) on the lhs of (36) cancels with its counterpart on 
the rhs, and we have 

2(m -- 1 ) 1 
( 7 + 2 m - - l , y + 2 m - - 1  100)=  ~ (-1)~(2m_l)----~.(y+l,y+llO0) 

I = 0  

(37) 

When k = y + 2 m -  1 (m= 1, 2,...), we get directly 

( y + 2m - l, y + 2m - 1  100) 

1 2 ( . , -  i) 1 
--~ ~ ( - 1 ) '  t=o ( 2 m _ l _ l ) ! ( y + l , y + l [ O 0 )  (38) 

However, as we will see in (42), the recursions (37), (38) generate the same 
sequence of { ( ? + 2 m -  1, y + 2 m -  1 ] 00)} expressed in terms of lower- 
order coefficients from the set { ( y + 2m, y + 2m ] 00) }; for m = 1 one finds 

1 
( y + l , y + l l 0 0 ) = ~ ( y ~  00) (39) 

which is nothing but Jancovici's result {13) adapted from the original deriva- 
tion for three dimensions to 2D jellium; for m = 2 we have 

1 1 
(y+3,  y+3lOO)=-~. . (y+2,  y+2lOO)--~. . (yylO0 ) (40) 

and so on. 
The two-body density 

n2(x) 2 -~  ~ ( kk l  00) x ~ = n o e  (41) 
k = y  

is, up to the prefactor, the generating function for the set of coefficients 
{(kk I 00)}. Multiplying both sides of (36) by x 2k and summing over all 
k = y, y + 1 ..... we obtain the functional relation for n2(x), 

n 2 ( x  ) ---- ( - -  1 )~' e -X2nz(ix ) (42) 

which, when written as 

e"~2/2nz(x) = ( -- 1 )r e(U,)2/Znz(ix) 
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gives no information on half of the powers of x in the power series expan- 
sion of exp(x2/2) n2(x); thus we see that one-half of the infinite sequence 
of sum rules (36) is ineffective. As a consequence of(42), 

h(x )  = - 1 + n2(x)/n~ 

= - 1 + ( - 1 )" e-~n2(ix)/n 2 

-- - 1  + ~, ( - 1 )  ~'+k ( k k  [ 00) x 2k (43) 

i.e., the positive coefficients { ( k k l 0 0 ) } ,  with alternating + ,  - signs 
attached, are the true coefficients of the short-distance expansion of the 
truncated pair correlation. The functional relation for n2(x), (42), also 
restricts h(x )  to the form 

h(x )  = - 1 + e-X2/2x2yn(x 4) (44) 

with H a MacLaurin series in its argument. The asymptotic behavior of 
h(x) ,  limx~ ~ h ( x ) =  0, yields 

lim n ( x  4) ,~ eX2/2x -2y (45) 
x ~ o o  

In particular, in the well-known case y =  1, one has the exact result 
H ( x  4) = (sinh x2/2 ) /(x2/2 ). 

4. G E N E R A L I Z A T I O N  

The transformation formula (42) is valid only in the thermodynamic 
limit and for zero external field, when the two-body correlation becomes 
translational invariant. To understand more deeply the origin of the sym- 
metry the formula comes from, it would be useful to know the equivalent 
of the functional relation (42) in the most general case of finite N and 
arbitrary inhomogeneity of the external potential, from which (42) would 
follow as a trivial consequence of translational invariance. This task is 
accomplished by a series of straightforward transformations for the ratio 
n2(zl, z*,  z2, z * ) / [ W ( Z l ,  z~ )  w(z2, 2"*)], expressed by using the fermionic 
representation of the truncated correlation (25) and the complex number 
notation z = r exp(i0): 
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n2(21, zl* ; 22, z ~ )  

w(z~, z* ) w(z2, z*) 
y(N-- 1) 

~ .  _ k _ * l . k ' . * l ' /  ~ I.~ ~ leg N 
ZlZl  z2~2 N , . ~ k a l , . ~ k ' ~ t l , /  

k, L k ' , l ' = O  

},(N-- 1 ) 
=(_l)r  ~ , r k T * l ~ k ' . * l ' / ' ~  IT./ ~ ~ X 

- 1 - 1  "~2x'2 N ~ k ' a l ~ k a l ' /  
k, Lk ' , l '=O 

r (N- -  1) 
=(_1)}, ~, ~ k _ * l ~ k ' . * l ' / ~  IT./ ~ ~-Ii, > 

-~2~1 Z,l~ 2 \ ~ " * k X l ~ ' ~ k  , 
k, Lk ' , l '=O 

=(__IF ndz2'z*;zl'z*___)_ ) 
w(z2, z*) w(z,, z*) 

(46) 

In the limit N ~  ~ and under homogeneous external conditions 
w(z, z*) = exp( -ynpzz*) ,  n2(zl ,  z*;  z2, z*)  depends only on the distance 
[ ( z l - z 2 ) ( z * -  z*)]  1/2 and we arrive at 

n 2 ( [ ( Z l - z , ) ( z * - z * ) ]  1 / 2 ) _  _ ( _l)~,  n 2 ( i [ ( z l - z 2 ) (  z * - "  *~ll/2~-2 ,J , 

exp[ -yT~p(z l z*  + ZzZ*)] exp[ - y n p ( z 2  z* + z t z ~ ) ]  
(47) 

Expressed in terms of the dimensionless distance x, Eq. (47) is indeed 
equivalent to (42), as was required. 

We see that the transformation of coordinates which leaves [up to 
the prefactor ( - I )  r] the ratio n 2 ( z l , z * ; z 2 ,  z * ) / [ w ( z ] ,  z*)  w(z 2 ,~2)]  
invariant reads 

z' 1 - '* - -* -' (48) =z2 ,  "-1 - .~ l  , ~2=z l ,  z~*=z*  

Written in the center-of-mass vector basis 

R = �89 + r2),  r = r l  - r2 ( 4 9 )  

it takes a more transparent form 

R'  = R ,  r' = i ~  x r ( 5 0 )  

where ~ is the unit vector in the z direction perpendicular to the (x, y) 
plane. 

We are now ready to extend the treatment to the case of general 
F = 2~ (7 ~ R § ). Let us write down the explicit formula for the pair correla- 
tion n2(fl, f2), (6), divided by all Boltzmann factors which are, due to the 
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averaging of 6-functions, dependent only on the particle vectors r~, r2, or 
on both of them: 

n2(rl,  r2) 
w(r I ) w(r 2) exp(y In r22) 

N(N-- 1) 1 , 3 < 2 Z N  R d2r3 "" "I~< R d2rn 

N N 
x I-I w(rj) r I  e r ln'~k I-I e~'l" (r~I~P (51) 

3 2 < j < k < N  3 

The product ( Z l - z j ) ( z * -  z* ) ( z2 -z j ) ( z* -  z * )  is invariant with respect to 
the transformation of coordinates (48) for every j =  3 ..... N.  Consequently, 
the transformation (48) leaves the whole integral over r 3 ..... rN unchanged, 
which results in the equivalence 

n2(21, .~*, Z2, 2*) 
w(z~, z*)  w(z2, z * ) [ ( z ~  - z2)(z* - z * ) ] ~  

nz(Zz, z*; zl, -~2 ) 
(52) 

W(Z2, Z*) W(Zl, ~_ ) [ ( . ' 2 - -Z , ) (~  1 - - Z * ) ]  ~ 

In the regime of translationally invariant correlations, with the dimen- 
sionless particle-particle distance x defined by x z = yrcp(z 1 - z2 ) ( z*  - z * ) ,  
we find 

n2(x) = ( -- 1 )r e -X2n2(ix ) (53) 

which now holds for arbitrary y/> 0 in the fluid-phase regime, when the 
appropriate branch of ( - 1 )r is chosen. 

5. CONCLUDING REMARKS 

The main result of the present work consists in the invariance of the 
ratio n2(rl, rE)/[w(rl)w(r2) exp(yln r22)] under the transformation (49), 
(50) of particle vectors r~, 1"2, which implies the simple functional formula 
(53) for the translation-invariant two-body density of the 2D OCP fluid. 

It is easy to show that the established symmetry uniquely defines the 
logarithmic potential, but we do not know whether a representation in 
which all symmetries of the model system are realized automatically is 
sufficient for solving its thermodynamics exactly, "at least" for y a positive 
integer when the short-distance expansion of the two-body density is 
analytical. It stands to reason that the treatment can be straightforwardly 
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extended to all higher-order correlations: their symmetry with respect to 
the transformation (49), (50) of  coordinates evidently applies for every 
couple of  particle indices. If  there are no other symmetries mixing the coor-  
dinates of  three, four .... particles (which is questionable), the model might 
be solvable using the infinite hierarchies of  YBG or linear response c~5) type. 

Another possible way to attack the problem is to concentrate on the 
microscopic 1D fermionic model for the set of  integer ~'s. This model, 
besides being the primary tool for finding our  new symmetry property of  
jellium, provides additional exact information, e.g., it helped us to establish 
the positivity of  the coefficients { ( k k  I 00)}  of the short-distance expan- 
sion of  h(x)  and to determine their asymptotic values (32). The simple 
form of the correlators ( 3 k ~ k ) ,  (24), and the possibility to express the 
whole set of  correlators ( S k T t i S k , ~ t ~ , )  using one particular sequence 
{ ( S k ~ k S o ~ o ) }  [see (34)] indicate that there might be some relevant 
simplification in the { 3, ~} algebra in the limit of  an infinite number  of 
chain sites. 

The general validity of  the transformation formula (52) suggests its 
potential application to the inhomogeneous crystal phase of  jellium, too. 
It is also worthwhile to search for a symmetry of  the kind presented for 
Coulomb systems in three and higher spatial dimensions. 
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